首页> 外文OA文献 >Utilizing the O-antigen lipopolysaccharide biosynthesis pathway in Escherichia coli to interrogate the substrate specificities of exogenous glycosyltransferase genes in a combinatorial approach
【2h】

Utilizing the O-antigen lipopolysaccharide biosynthesis pathway in Escherichia coli to interrogate the substrate specificities of exogenous glycosyltransferase genes in a combinatorial approach

机译:利用大肠杆菌中的O抗原脂多糖生物合成途径以组合方式询问外源糖基转移酶基因的底物特异性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In previous work, our laboratory generated novel chimeric lipopolysaccharides (LPS) in Escherichia coli transformed with a plasmid containing exogenous lipooligosaccharide synthesis genes (lsg) from Haemophilus influenzae. Analysis of these novel oligosaccharide-LPS chimeras allowed characterization of the carbohydrate structures generated by several putative glycosyltransferase genes within the lsg locus. Here, we adapted this strategy to construct a modular approach to study the synthetic properties of individual glycosyltransferases expressed alone and in combinations. To this end, a set of expression vectors containing one to four putative glycosyltransferase genes from the lsg locus, lsgC-F, were transformed into E. coli K12 (XL-1) which is defective in LPS O-antigen biosynthesis. This strategy relied on the inclusion of the H. influenzae gene product lsgG in every plasmid construct, which partially rescues the E. coli LPS biosynthesis defect by priming uridine diphosphate-undecaprenyl in the WecA-dependent O-antigen synthetic pathway with N-acetyl-glucosamine (GlcNAc). This GlcNAc-undecaprenyl then served as an acceptor substrate for further carbohydrate extension by transformed glycosyltransferases. The resultant LPS-linked chimeric glycans were isolated from their E. coli constructs and characterized by mass spectrometry, methylation analysis and enzyme-linked immunosorbent assays. These structural data allowed the specificity of various glycosyltransferases to be unambiguously assigned to individual genes. LsgF was found to transfer a galactose (Gal) to terminal GlcNAc. LsgE was found to transfer GlcNAc to Gal-GlcNAc, and both LsgF and LsgD were found to transfer Gal to GlcNAc-Gal-GlcNAc but with differing linkage specificities. This method can be generalized and readily adapted to study the substrate specificity of other putative or uncharacterized glycosyltransferases.
机译:在以前的工作中,我们的实验室在大肠杆菌中产生了新的嵌合脂多糖(LPS),该质粒用含有流感嗜血杆菌的外源脂寡糖合成基因(lsg)的质粒转化。这些新颖的寡糖-LPS嵌合体的分析允许表征由lsg基因座中的几个假定的糖基转移酶基因产生的碳水化合物结构。在这里,我们采用了这种策略来构建模块化方法,以研究单独或组合表达的单个糖基转移酶的合成特性。为此,将含有来自lsg基因座lsgC-F的一个至四个推定的糖基转移酶基因的一组表达载体转化到LPS O-抗原生物合成有缺陷的大肠杆菌K12(XL-1)中。此策略依赖于在每个质粒构建体中包含流感嗜血杆菌基因产物lsgG,通过在尿嘧啶二磷酸-十一碳烯基中引发尿苷二磷酸-十一碳烯基与N-乙酰基-尿嘧啶结合,从而部分挽救大肠杆菌LPS生物合成缺陷。葡萄糖胺(GlcNAc)。然后,该GlcNAc-十一碳二烯基用作通过转化的糖基转移酶进一步碳水化合物延伸的受体底物。从它们的大肠杆菌构建物中分离得到的LPS连接的嵌合聚糖,并通过质谱,甲基化分析和酶联免疫吸附测定进行表征。这些结构数据允许将各种糖基转移酶的特异性明确分配给各个基因。发现LsgF将半乳糖(Gal)转移至末端GlcNAc。发现LsgE将GlcNAc转移到Gal-GlcNAc,并且发现LsgF和LsgD都将Gal转移到GlcNAc-Gal-GlcNAc,但是具有不同的连接特异性。该方法可以推广并容易地用于研究其他推定的或未表征的糖基转移酶的底物特异性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号